This research was partially funded by the Government under agreement No. W911W6-13-2-0001. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation thereon. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Aviation Applied Technology Directorate or the U.S. Government.
Definitions

V-280 Valor is the Bell Naming Convention for 3rd Gen Tiltrotor Effort

JMR – Joint Multi-Role
- BAA
- MPS

Science & Technology (S&T)
- MPS: Model Performance Specification
- AVCD: Air Vehicle Concept Demonstrator

FVL – Future Vertical Lift
- Program of Record (PoR)
- JMR – Joint Multi-Role
- FVL – Future Vertical Lift

THE FUTURE OF VERTICAL LIFT

JMR TD REDUCES RISK FOR FVL
Team Valor

- A team of industry leaders to deliver the highest technological solution while reducing risk.
- Teammates bring the engineering resources, capabilities, and critical thinking to advance the design and technology maturation.

<table>
<thead>
<tr>
<th>Company</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lockheed Martin</td>
<td>Mission Equipment Package</td>
</tr>
<tr>
<td>MOOG</td>
<td>Flight Control System</td>
</tr>
<tr>
<td>GE</td>
<td>Engine Support</td>
</tr>
<tr>
<td>GKN Aerospace</td>
<td>V-Tail</td>
</tr>
<tr>
<td>Spirit AeroSystems</td>
<td>Fuselage</td>
</tr>
<tr>
<td>LORD</td>
<td>Elastomerics</td>
</tr>
<tr>
<td>Eaton</td>
<td>Hydraulics</td>
</tr>
<tr>
<td>IAI</td>
<td>Nacelle Structure</td>
</tr>
<tr>
<td>Astronics</td>
<td>Electrical</td>
</tr>
<tr>
<td>Meggitt</td>
<td>Fuel</td>
</tr>
<tr>
<td>TRU</td>
<td>Training and Simulation</td>
</tr>
</tbody>
</table>
Team Valor

Developing Industry Leading Teammates Worldwide

Mission System Architecture and Mission Equipment Packages
Flight Control System Engine Support
Elastomerics
Hydraulics
Nacelles

V-Tail
Fuselage
Electrical
Fuel
Training & Sim

THE FUTURE OF VERTICAL LIFT
Voice of the Customer

- Speed, Range, Payload, Reliability, and Survivability
- Affordability
- Hover Maneuverability
- High Hot Operations
- Sustainability
- Commonality

Bell’s Technology Demonstrator to Address These Capabilities
JMR Tech Demonstrator

- Superior Low-Speed Maneuverability
- Advanced Rotor and Drive System
- Non-Rotating Fixed Engines
- Low Disk Loading
- 2 Pilots / 2 Crew Chiefs
- Fly-By-Wire
- Conventional Retractable Landing Gear
- Large Side Door
- 11 Passengers

HELICOPTER MODE

THE FUTURE OF VERTICAL LIFT
JMR Tech Demonstrator

Cruises at 280 knots

Large Cell Carbon Core Wing

Turboprop-like Ride Quality

Superior High-Speed Handling Qualities

Advanced Composite Fuselage

FORWARD FLIGHT MODE
V-280 Wing Design for Mfg

Affordability Characteristics

- Semi-Monocoque design (large cell carbon core)
- No skin stiffening details/ fasteners
- Straight wing (few splice details)
- Broad goods lay up with reduced pad ups
- Bonded continuous skin assemblies
- Minimal ply drops
- Bonded LCCC rib assembly
- Toolled interfaces – reduced shimming
- Determinate assembly
- Point of use material dispensing
- Minimal compactions

REDUCED COMPLEXITY, LESS PARTS, LOWER COST
Scaled AVCD Demonstrator Mission
Crew: 4
Payload: 11 passengers

229 nm mission radius
MPS & Variants

MPS Updates

Marinized

Attack Variant

Medevac Variant
Attack Configuration

Common Airframe to Utility
30 mm nose gun

Internal Weapons Bays
- Fwd Bay – Fwd Firing, Deploys Outboard
- 2 Aft Bays - Lateral Firing
Comparable Footprint

THE FUTURE OF VERTICAL LIFT
Exceptional capability

- Speed, range, payload, survivability

Manageable technical risk

- 3rd Generation Tiltrotor
- Cost and performance improvements

Total ownership cost

- Unprecedented fuel efficiency
- Greatest operational productivity
- Proven commonality with variants

THE NEXT GENERATION OF VERTICAL LIFT: TWICE AS FAST, TWICE AS FAR